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Definitions

Definition 2.1(Broadcast).
A broadcast operation is initiated by a single node, the source. The source
wants to send a message to all other nodes in the system.

Definition 2.2(Distance, Radius, Diameter).
The distance between two nodes u and v in an undirected graph G is the
number of hops of a minimum path between u and v.
The radius of a node u is the maximum distance between u and any other
node in the graph.
The radius of a graph is the minimum radius of any node in the graph.
The diameter of a graph is the maximum distance between two arbitrary
nodes.

R≤ D≤ 2R
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Message Complexity

Definition 2.3 (Message Complexity).
The message complexity of an algorithm is determined by the total number
of messages exchanged

Theorem 2.4 (Broadcast Lower Bound).
The message complexity of broadcast is at least n−1. The sources radius
is a lower bound for the time complexity.

You can use a pre-computed spanning tree to do broadcast with tight
message complexity. If the spanning tree is a breadth-first search
spanning tree (for a given source), then the time complexity is tight as
well.
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Clean Broadcast

Definition 2.5 (Clean).
A graph (network) is clean if the nodes do not know the topology of the
graph.

Definition 2.6 (Clean Broadcast Lower Bound).
For a clean network, the number of edges m is a lower bound for the
broadcast message complexity.

Proof: If you do not try every edge, you might miss a whole part of the graph
behind it.
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Asynchronous Distributed Algorithms

Definition 2.7 (Asynchronous Distributed Algorithm).
In the asynchronous model, algorithms are event driven (upon receiving
message . . . , do . . . ). Nodes cannot access a global clock. A message sent
from one node to another will arrive in finite but unbounded time.

The asynchronous model and the synchronous model (Definition
1.8) are the cornerstone models in distributed computing.

Note that in the asynchronous model, messages that take a longer
path may arrive earlier.
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Asynchronous Time Complexity

Definition 2.8 (Asynchronous Time Complexity).
For asynchronous algorithms (as defined in 2.7) the time complexity is the
number of time units from the start of the execution to its completion in
the worst case (every legal input, every execution scenario), assuming that
each message has a delay of at most one time unit.

The clean broadcast lower bound (Theorem 2.6) directly brings
us to the well known flooding algorithm.
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Flooding

ALGORITHM 2.9 FLOODING()
1: The source (root) sends the message to all neighbors.
2: Each other node v upon receiving the message the first time forwards

the message to all (other) neighbors.
3: Upon later receiving the message agian (over other edges), a node can

discard the message.

If node v receives the message first from node u, then node v calls node
u parent. This parent relation defines a spanning tree T . If the
flooding algorithm is executed in a synchronous system, then T is a
breadth-first search spanning tree (with respect to the root).

More interestingly, also in asynchronous systems the flooding
algorithm terminates after R time units, R being the radius of the
source. However, the constructed spanning tree may not be a
breadth-first search spanning tree.
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Not a BFS spaning tree!

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 8 / 13



Convergecast

Convergecast is the same as broadcast, just reversed: Instead of a root
sending a message to all other nodes, all other nodes send information to a
root (starting from the leaves, i.e., the tree T is known). The simplest
convergecast algorithm is the echo algorithm:

ALGORITHM 2.10 ECHO()
1: A leave sends a message to its parent.
2: If an inner node has received a message from each child, it sends a

message to the parent

Usually the echo algorithm is paired with the flooding algorithm,
which is used to let the leaves know that they should start the echo
process; this is known as flooding/echo.

One can use convergecast for termination detection, for example. If a
root wants to know whether all nodes in the system have finished some
task, it initiates a flooding/echo; the message in the echo algorithm
then means This subtree has finished the task.
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Convergecast

Message complexity of the echo algorithm is n−1, but together
with flooding it is O(m), where m = |E| is the number of edges
in the graph.

The time complexity of the echo algorithm is determined by the
depth of the spanning tree (i.e., the radius of the root within the
tree) generated by the flooding algorithm.

The flooding/echo algorithm can do much more than collecting
acknowledgements from subtrees. One can for instance use it to
compute the number of nodes in the system, or the maximum ID,
or the sum of all values stored in the system, or a route-disjoint
matching.

Moreover, by combining results one can compute even fancier
aggregations,e.g., with the number of nodes and the sum one can
compute the average. With the average one can compute the
standard deviation.And so on . . .
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BFS Tree Construction

In synchronous systems the flooding algorithm is a simple yet
efficient method to construct a breadth-first search (BFS)
spanning tree.

How do we construct a BFS tree in asynchronous systems?

Two classic BFS constructions:

Dijkstra and Bellman-Ford
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Dijkstra BFS

Basic idea:

always adding the closest node to the existing part of the BFS tree.

developing the BFS tree layer by layer.

The algorithm proceeds in phases. In phase p the nodes with distance p to the root are
detected. Let Tp be the tree in phase p.

ALGORITHM 2.11 DIJKSTRA BFS()
1: We start with T1 which is the root plus all direct neighbors of the root. We start with phase

p = 1:
2: repeat
3: The root starts phase p by broadcasting start p within Tp.
4: When receiving start p a leaf node u of Tp (that is, a node that was newly discovered in

the last phase) sends a join p+1 message to all quiet neighbors. (A neighbor v is quiet if u
has not yet talked to v.)

5: A node v receiving the first join p+1 message replies with ACK and becomes a leaf of
the tree Tp+1.

6: A node v receiving any further join message replies with NACK.
7: The leaves of Tp collect all the answers of their neighbors; then the leaves start an echo

algorithm back to the root.
8: When the echo process terminates at the root, the root increments the phase
9: until there was no new node detected
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